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Abstract

This paper is devoted to studying a Pal-type interpolation problem on the roots
of Laguerre polynomials of degree n and its derivative of degree n — 1. In this
paper, we study an interpolation on the polynomials with an additional condi-
tion on the zeros of Laguerre polynomials. The mixed type (0,1;0)-interpolation
problem is studied in a unified way. The objective of this study is to identify
a single interpolatory polynomial with degree at most 3n + k that satisfies the
interpolatory requirements. In the regular cases we find the explicit forms of
the interpolational polynomials. Under certain conditions over the Laguerre
polynomial and its derivative, we also obtain the estimates of the fundamental
polynomials on the whole real line.
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1 Introduction

Interpolation uses functions that traverse precisely through all of the input
points and may be applied to modest amounts of data. Without having to pass
exactly through the given points, we arrive to the function that pass through a
set of data in the best way feasible using approximation. Interpolation entails
the application of an interpolatory function to every point that is given, whereas
approximation allows some degree of error and the resulting function can be
smooth.

The interpolational problem that arise when the values of the function and its
successive derivatives are specified at the provided set of points have been ex-
plored by P4l [7], Srivastava [8], Ojha [6], Lénard [4] and Mathur [5]. Srivastava
and Singh [9] [10] studied the Pal-type interpolation problem on the roots of
Ultraspherical polynomials. Non-consecutive derivatives are employed in the
interpolation process to extract the data while utilizing Lacunary interpolation.

On the interval [—1, 1] with the additional knot =}, where 2 is equivalent to one
of the nodal points z (k = 1,...n), Xie [14] proposed a new explicit formula
of pél-type interpolation. Szili [13] looked at Pal-type interpolation on Hermite
polynomials with the extra point zo = 0. Szili [12] studied the inverse P&l
interpolational problem on the roots of the integrated Legendre polynomials.
Eneduanya [2] investigated the special case for the Legendre polynomial.

The Pal type interpolation problem on the nodes of Laguerre abscissas was also
investigated by Lénard [3] and Chak [1]. Consider the two interscaled systems
of nodal points {z;}7_, and {z}}7—!, that is,

—00 < <] <T2 < < Ty < Tph_q < Ty < F00.

The function values in P4l type interpolation are specified at the zeros of w,, (x),
whereas the derivative values are specified at the zeros of w,,(x), where

(1)

and

wp(z) = (x — 1) (x — 22)...(x — )

w,(x) =n(z —x7)...(x —x,_1).

Laguerre polynomial L (z) (k> —1) has n different real roots in (0, co) and
the inter scaled system of nodal points can be used to determine the zeros of

L,(Ik)(m) and L) (z). Let {u;};—, and {,uf}?z_ll be the two sets of nodal points
in the interval [0, co) inter scaled such that
(2)

We seek to determine a polynomial A, (z) of lowest possible degree 3n + k
satisfying the interpolatory conditions:

0< g < pf < prg < oo < et < flyy_q < fln, < F00.

Ap(pi) =ali=1,2...,n,
A (i) =B5i=1,2...,n,
) A =ri= 1,2, =1,
A (o) = CP*(J)J_Ol Lk,
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and
(4) A, (0) =0,

where {af},, {8537y, {v;}7=], and {@3(”}}“:0, are arbitrary real numbers.

The objective is to consider the problem of explicit representation, estimation
of sequence {A, ()} of polynomials of degree < 3n + k.

2 Preliminaries

We shall use some well known properties and result, Yadav [15], of the Laguerre

Polynomial L,(f)(x) which are as follows: The differential equation of Laguerre
polynomial is given by

(5) xD?*LE(2) + (1 4+ k — 2)DLF (2) + nLk(z) = 0,

where n is a positive integer and k > —1. For the roots of P (z) we have

6) 255 = —=lim +O(U)].

(7) L5 (z;) ~ 573 (0 < 2; < Qn=1,2,3,...),
[ #5750 1), enl<a<Q

® @l ={ bony ooy

(9) O(l(z)) = O (z)) = 1,

(10) |:B—:Bk]~%.

Now we also have some properties of fundamental polynomials of the Lagranges
interpolation which are given as:

L L@

“” M -y
k),
(12) I (a) = — @)

S— .
LY (yj) (@ — )

Here [;(x) and [7(z) are the polynomials of degree n — 1 and n — 2 respectively.
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3 Explicit Representation of Interpolatory Poly-
nomial

Let 2n — 1 points in (0 oo) be given by (2). Then to the prescribed numbers
{az}r {8, {vF}7=], there exists a unique polynomial {4, (z)} of degree
< 3n + k satisfying the conditions (3) and (4).

The polynomial A,,(z) is explicitly given by:

ZaU +ZB*V Z +Zgo*(j)

where {U; ()}, {Vj(2)}j_1, {W;(2)}2 ~},and {Cj(x ) _o are the polynomial
having the degree < 3n + k. These polynomials are umque and satisfies the
following conditions:

For j =0,1,2,...,n,

TL

(13)

Uj €T, :51']', (22172, ,n),
Ul (xz;) =0, (i=1,2,...,n),
J
(14) Ujl(yi):(), (i:1,2,...,n—1),
Uj( ) =0, (1=0,1,...,k),
for j =1,2 M,
Vj (x;) =0, (1=1,2,...,n),
V! () = 645 (1=1,2,...,n)
j 7 17 5 4y ) )
(15) Vi) =0, (i=1.2...n—1)
Vo) =0, (1=0,1,...,k),
for j =1,2 ,n—1,
Wj(&?i):o, (7;:1,2,.. ,n),
(16) ij(xi):(), .(i:1,2,. ,n),
Wj(yli):5iJ7 (221,2,...,77,—1),
Wj(O):O, (l=0,1,...,k),
forl=0,1,...,k,
Ck (z;) =0, (1=1,2,...,n),
(17) C). (x;) =0, (i=1,2,...,n),
Cr(y)) =0, (i=1,2,....,n—1),
CL(0) = &5, (1=0,1,...,k),
Here 0;; is a Kronecker delta,
_ )L oi=y
(18) 5”‘{ 0, i#]
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The explicit form of the U (x), V;(z), W;(x) and Cy(x) are given in the following
theorem.

Lemma 1:

The fundamental polynomial {U;(x)}}_, satisfying the interpolatory conditions
(14) is given by:

For j =0,
(k) *) 117
L® () [Ln (ac)]

(19) Uo (I) = ; 2
L (0 |24P(0)]

For 7 =1,2...n,

217 ()12 L3 .
(20) i) - PP @ [1 L (b= 22)

af 2 ()

where [;(x) is given by (11).
Proof:
For j =1,2...n, let

(21)  Uj(2) = Ua* 21 (@)2L%) (2) + Usah 2 (2 — ) [l ()P LY (2),

be a polynomial of degree < 3n + k. Note that Uf (z) satisfies the equations
(14) provided

(22) P

x?HL%k)/ (z;)

Also for j = 1,2....n, the condition U;/(Z‘i) = 0 provides

(23) , = (k} — 2:L'J) .
LY (a5)
Thus,

which completes the proof of the lemma.
Lemma 2:

The fundamental polynomial {V;(x) ;-‘:_11 satisfying the interpolatory conditions
(15) is given by:
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For j=1,2...n—1,

A 2(@) Ly (@) Ly (@)
Y 2

e [L%) ((BJ)]

(24) Vi) =

)

J

where [;(z) is given by (11).
Proof:
For j =1,2...n, let

(25) Vi (2) = v 20 (2) IO () LE) (a)

be a polynomial of degree < 3n + k. Note that V; () satisfies the equations
(15) provided

1
(26) v = o (k)/ 29
252 [ L (@y)]
Thus,

which completes the proof of the lemma.
Lemma 3:

The fundamental polynomial {W;(x) ?:_11 satisfying the interpolatory conditions
(16) is given by:

For j=1,2...n—1,

(27) Wj(a) =

where [} (z) is given by (12).
Proof:
For j=1,2...n—1, let

(28) Wi (z) = wiz" 20 (x) [Lgﬂ (x)} ’

be a polynomial of degree < 3n + k. Note that W (z) satisfies the equations
(16) provided

1

(29) wy = y;?_i_z [L%k)(yj)}

29
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Thus,

it completes the lemma’s proof.
Lemma 4:

The interpolatory conditions (17) are satisfied by the basic polynomial {C} (x)}?zo
which is provided by:

For j=0,1,2,....k — 1,

Cj(x) = a;(@)a P @)L (x) + LY (@) L) (o)

J xk—7 ?
and
1 ’
(31) Ci(x) = A LP ()P L (),

 RLP )L (o)

where the degree of the polynomial a;(z) is at most (k — j — 1) and the degree
of the polynomial b;(x) is at most (k — j).

Proof:
To find C;(x), let us suppose that C;(x) for some fixed j € {0,1,...,k — 1}

(32)  Cj(a) = aj(@)2/ LY (@)L (2) + " LE (@) LY ()b (),

where the degree of the polynomial a}(z) is (k — j — 1) and the degree of the
polynomial b, (z) is n. Also note that for (I = 0,1,...,j — 1), C\?(0) = 0. We
know that Lgc)(a:i) =0 and L\ (yi) = 0, therefore C(x;) = 0 and C;(y;) =0

for i = 1,2,...,n. The coefficient of the polynomial a}(x), for (I = j,....,k — 1),
is calculated by:

(33) o)== @@ (L @PLP )] =by.

dat LV =0

Now using the condition C; (z;) =0 of (17), we will have

b (i) = —(2:) LD (2)a (x2),

this will imply the value of b (x) as:

L0 (2)a (2) + 3 () L ()

(34 bi(w) = - ,
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where the degree of the polynomial a}(z) is at most (k —j — 1) and the degree
of the polynomial b} (x) is at most (k —j). By using the equations (32) and (34)
we get the polynomial C;(x) of degree < 3n + k holding the equations (17).

Now we state our main theorem.
Theorem 1:

Assuming that the interpolatory function f : R — R is continuous as well as
differentiable such that

C(m) = {f(z): f(x) = O(z™) as & — oo; },

where m is a non negative integer, f is continuous function in the interval [0, co),
then for each f € C'(m) and a non negative k,

n n n—1 k
(35)  An(@) =Y ajUi(a)+ > BiVi(@) + v W;@) + Y ¢ (@),
=0 j=1 j=1 =0
satisfies the relation:
(36) |An(x) — f(z)|=0(1)w (f, 10%) , for 0 <z <cent
(37)  |An(@) — f(z)] = O(1)w <f, 1‘3%‘) , for en! <z <0

here w represents the modulus of continuity.

Prior to the proving of theorem 1, first estimate the values of the following
fundamental polynomials which are listed below:

4 Estimation of the Fundamental Polynomials

Theorem 2:

Let us assume the elementary polynomial U;(z), for j = 0,1, 2, ..., n be presented

by:
k27 ()12 Lk k9
zj Ly () T
then we have
(39) > ;)] = O(1), for 0 <z <en™!
§=0
(40) > Ui (@) = 0(1), for en ' <z <Q.
§=0
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Proof:

Rewrite the polynomial as:

k) k)’
Uiy = D L@PLY @) (k= 2a) FERUG@PLY @)
J - / / 7/
LY (a) i LY (a)

then we have

n_ |25 ()]

S <> ——
i=1 |25

=1

il (;p)'

LY () )

o 10k = 20)] 2542 ()2 (28 (@) (@ — )]

(41) +

k
=1 |z |25

L (ay)

As Uj(x) is independent to Lk (z) and by using the equations (6), (7), (9),
(10), we get the desired result.

E?:o |Uj(z)| = O(1), for 0 <z <Q.
Theorem 3:

Let us assume the basic polynomial Vj(z), for j = 1,2,...,n be presented by:

220 () LY () LY ()

’ 2
zy ™ [ngk) (fﬂj)]

(42) Vi) =

I

then we have

(43) > [Vi(@)l = 0(n), for 0<a<cn!
=1

(44) Vi(z)| = O(n™1), for en™t <2 <Q.
=1

Proof:

From the polynomial V(x) we have

42| |1 ()] |LP (@)|| L (z)
k2| [ )]

9

ACED

by using the equations (6), (7), (8), (9), we get the desired result.
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iy [Vi(x)| =0(n™"), for 0<z<Q.
Theorem 4:

Let us suppose the elementary polynomial W;(z), for j =
presented by:

1,2,...n — 1 be

2203 (@) [L8 ()]

2
yit? [L%k)(yj)]

(45) Wi(x) =

)

then we have

n—1

(46) > W) = 0(1), for 0<z <en!
j=1
n—1

(47) > W) = 0(1), for en™' <z <Q.
j=1

Proof:

From the polynomial W;(z) we have

2 3 )| [ )]

(Wj(2)] < X 2
52 [0 ()]
S e ]

2
= = [0 )]

by using the equations (6), (8), (9), we get the desired result.
S W) = 0(1), for 0 <z < Q.
Remark:

C(m) = {f(x) : f is continuous in [0,00), f(x) = O(z™) as x — oo; }, where
m > 0 is an integer. Then by the result of Szegd [11],

Ly, oo f(x) — HY (f,2)]1 =0,

where I C (0,00) for a > 0, or I C (0,00) for —1 < o < 0. Also note that there

is a function in C'(m) such that {H,(fl)(f, x)} diverges for « > 0 at x = 0. And
for the convergence rate we have:

O(w (f,n_l_a)); -1<a<0

(48) logn.
oo(r2): ox-

fla) = H) (f.2)| =

Nl

Vol.73, Issue 4, December: 2024

journaloi.com

Page-1043



MIRAO Upy,
< Loy

7]

Journal

¥ S
Dyyg 10

\\\‘ MA NAn4J

Oriental Institute ISSN: 0030-5324
M.S. University of Baroda UGC CARE Group 1

5 Proof of the main theorem 1:

Let us suppose that P,(x) be a polynomial of degree < 3n + k and A, (x) be
given by (13). Note that A, (z) is exact for every fundamental polynomials of
degree < 3n + k therefore,

(49)
n n n—1 k
Py(z) = Z Pn($j)Uj($)+Z P;L(xj)vj(%’ﬂz Py (y;)W; (1‘)+Z Pp(20)Cj (),

from equation (13) and (49) we get

(50) [f(x) = An(2)] < [f(2) = Pu(@)] + [Pa(z) — An(2)]

D (@) = Paley)| Vi ()|
£ 3217 0) — Paly) W30
k]_

+ 2 17 (0) = Paao)| 1C;()

Thus, equation (48) and the conclusions of theorem 2, 3, and 4 complete the
proof of the theorem 1.

6 Conclusion

Let {2;}7_; and {y;}7]' be the roots of Laguerre polynomials LY () and its

derivative L%k) (x) respectively. If f : R — R be continuously differentiable
interpolatory function, then there is a polynomial A, (x) having the degree at
most 3n + k holding the equations (3) and an additional condition (4) which
converges uniformly to f(x) on real number line for the large value of n.

References

[1] Chak, A. M. and Szabados, J. On (0, 2) interpolation for the Laguerre
Abscissas, Acta Math. Hung, 49 (3-4) (1987), 415-423.

[2] Eneduanya, S. A. On the convergence of interpolation polynomials, Anal.
Math. 11 (1985), 13-22.

[3] Lénard, M. Pél-type interpolation and quadrature formulae on Laguerre
abscissas, Math. Pannon. 15/2 (2004), 265-274.

Vol.73, Issue 4, December: 2024 journaloi.com Page-1044



Journal
Ofthe

Oriental Institute
M.S. University of Baroda

7]

\\\‘ MA NAn4J

|

MIRAO Upy,
< Loy

¥ S
Dyyg 10

ISSN: 0030-5324
UGC CARE Group 1

[4]

[5]

Lénard, M. On weighted (0, 2)-type interpolation, Electron. Trans. Numer.
Anal. Vol. 25, pp. 206-223, 2006.

Mathur, P. and Dutta S. On Pé&l-type weighted lacunary (0,2;0)-
interpolation on infinite interval (—oo,+00), Approx. Theory & its Appl.
17:4 (2001), 1-10.

Ojha, D.; Srivastava, R. An evaluation of weighted polynomial interpolation
with certain conditions on the roots of Hermite polynomial, Bull. Transilv.
Univ. Brasov Ser. I1I: Mathematics and Computer Science, Vol. 1(63), No.
1-2021, 209-220.

Péal, L. G. A new modification of the Hermite Fejér interpolation, Anal.
Math. 1(1975), 197-205.

Srivastava, R.; Mathur, K. K. An interpolation process on the roots of
Hermite polynomials (0;0,1)-interpolation on infinite interval, Bull. Inst.

Math. Acad. Sin. (N.S.) Vol. 26, no. 3 (1998).

Srivastava, R. and Singh, Y. An Interpolation Process on the Roots of Ul-
traspherical Polynomials, Applications and Applied Mathematics: An In-
ternational Journal (AAM), Vol. 13, Iss. 2, (2018) Article 32.

Singh, Y.; Srivastava, R. An analysis of (0,1,2;0) polynomial interpolation
including interpolation on boundary points of interval [-1, 1], Bull. Transilv.
Univ. Bragov Ser. II1T: Mathematics and Computer Science, Vol. 2(64), No.
1-2022, 159-176.

Szegd, G. Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23,
New York, 1939., 4th ed. 1975.

Szili, L. An interpolation process on the roots of integrated Legendre poly-
nomials, Anal. Math. 9(1983), 235-245.

Szili, L. A convergence theorem for the Pal method of interpolation on the
roots of Hermite polynomials, Anal. Math. 11(1985), 75-84.

Xie, T. F. On the Pél’s problem, Chinese Quart J. Math. 7 (1992), 48-54.

Yadav, S. P. On extended Hermite-Fezér interpolation based on the zeros
of Laguerre polynomials, Proc. Indian Acad. Sci. Math. Sci., Vol. 94, Nos
2 and 3, December 1985, pp. 61-69.

Vol.73, Issue 4, December: 2024 journaloi.com Page

-1045



