Hemant Sharma¹ and Mohal Lal²

¹Department of Botany, Dayanand College, Hisar-125001, Haryana ²Department of Botany, Vaish College, Bhiwani-127021, Haryana ¹Email: <u>hemantbotany@gmail.com</u>

ABSTRACT

India is well known for its abundant biodiversity, of which a substantial percentage is made up of plant species. A wide variety of plant species is found in the country's diverse ecosystems, which contribute significantly to the world's biodiversity. Plant diversity or the variety of plant species and ecosystems is vital to the health and sustainability of our planet and offers a multitude of ecological, economic and cultural benefits. Plants are essential to human well-being and the functioning of ecosystems, regulating climate, supporting agriculture and providing medicinal resources. As such, protecting plant diversity is essential for sustainable development and the survival of future generations. However, because of a variety of human activities and environmental variables, this biodiversity faces several problems. The aim of this paper is to examine the current status of plant diversity in India, the challenges it faces and the conservation initiatives being made to lessen these obstacles. This study offers insights into the significance of protecting plant diversity and describes practical conservation solutions by examining current research, efforts and policies.

Keywords: Plant diversity, biodiversity, conservation, protected areas.

INTRODUCTION

Biodiversity refers to the wide range of life forms found on our planet. Diversity in ecosystems, species and genes are all a part of it (Chandrakar, 2012). Keeping in the view of plants, Heywood and Watson (1995) defined plant diversity as "Plant diversity encompasses the variety and variability of plants, including genetic diversity, species diversity and ecosystem diversity, which are the fundamental components of biodiversity". Moreover, according to Groombridge and Jenkins (2002) "Plant diversity refers to the variability among living plants, including the diversity within species, between species and of ecosystems in which plantsoccur".

India is one of the 17 mega biodiversity countries in the world (Mao *et al.* 2023). It is because such a diverse array of plant species is found in India's diverse ecosystems, which contribute significantly to the world's biodiversity. Plant diversity or the variety of plant species and ecosystems (**Table 1**), is vital to the health and sustainability of our planet and offers a multitude of ecological, economic and cultural benefits. Plants are essential to human well-being and the functioning of ecosystems, regulating climate, supporting agriculture and providing medicinal resources. As such, protecting plant diversity is essential for sustainable development and the survival of future generations.

1. Present Status of Plant diversity in India:

India constitutes about 2.4% of the Earth's terrestrial expanse, however it accounts for 7-8% of the global biodiversity, encompassing millions of plant and animal species (Bawa et al. 2021). The country has a remarkable variety of plant species, found in a range of habitats from tropical rainforests to alpine meadows. Because of the vast range of changes in climate, altitude, and ecological niches, India has a rich and diversified flora. According to Plant Discoveries-2022 of Botanical Survey of India (Mao et al. 2023)- approximately 55387 plant species have been identified and categorized in India many more are yet to be identified and described. This group, which makes up roughly 7% of all plant species worldwide, includes Angiosperms (22108), Gymnosperms (83), Pteridophytes Vol. 73, Issue 4, Oct-Dec: 2024 www.journaloi.com Page | 723

Journal of the

Oriental Institute

M.S. University of Baroda

ISSN: 0030-5324 UGC CARE Group 1

(1319), Bryophytes (2819), Lichens (3044), Fungi (15701), Algae (9035), and Virus/Bacteria (1278)(Fig 1). Approximately 28% of the flora in India is endemic to the Nation. According to a report of Botanical Survey of India, Kolkata under Ministry of Environment & Forest, Govt. of India (2024) - The plant diversity in India is majorly concentrated in the 4 biodiversity hotspots, namely Eastern Himalayas, Western Ghats (and Sri Lanka), Northeast India and Andaman Islands (Indo-Burma) and Nicobar Island (Sundaland) (**Table 2**), out of 34 biodiversity hotspots recognised in the world. However, numerous plant species have disappeared and habitats have deteriorated as a result of fast deforestation, habitat fragmentation, invasive species, and pollution. Many plant species are in risk of extinction if proper conservation measures are not put in place. These plants are classified as critically endangered or endangered.

Because of its varied climatic zones, geography and habitats, India is known worldwide as a hotspot for biodiversity, home to a remarkable range of plant species. India's ecosystems contain a wide variety of plant life, including indigenous and vulnerable species, from the lush tropical rainforests of the Western Ghats to the alpine meadows of the Himalayas.

Source: Mao *et al.* 2023, Arisdason, W. &Lakshminarasimhan, P. (2024) Botanical Survey of India, under Ministry of Environment & Forest, Govt. of India.

Table 1:	Different	forms	of Plant	diversity	in	India:
----------	-----------	-------	----------	-----------	----	--------

Form of Plant diversity	Description	Examples
Species Diversity	It denotes the diversity of various plant species within a specific area or environment.	Himalayan Rhododendrons (<i>Rhododendron spp.</i>), Sundarbans Mangrove Forests (<i>Avicennia</i>
Genetic Diversity	It represents the variation within and among plant species at the genetic level. It includes differences in DNA sequences, alleles and genotypes.	Rice Varieties: Basmati rice, SonaMasuri, IR8 (Semidwarf rice), Mango Cultivars: Alphonso, Dasheri, Langra, Tea Varieties: Assam, Darjeeling, Nilgiri
Ecosystem Diversity	It includes the variety of different ecosystems and habitats in which plants develop and engage with other living things. India is home to several different types of ecosystems, such as grasslands, wetlands, forests, deserts, and coastal regions, all of which support distinct plant populations.	Western Himalayan Temperate Forests, Western Ghats Rainforests, Thar Desert Vegetation, Eastern Himalayan Broadleaf Forests, Coastal Mangrove Ecosystems

Hotspot	Description	Examples
Western Ghats	One of the eight hottest biodiversity hotspots	Kadamba (Neolamarckia cadamba)
	in the world as well as a UNESCO World	
	Heritage Site. Numerous plant species are	
	supported by the tropical rainforests,	
	montane forests and shola-grassland	
	ecosystems found in the Western Ghats.	
Eastern	Another hotspot for biodiversity,	Himalayan Rhododendron
Himalayas	distinguished by a wide variety of	(Rhododendron arboretum), Blue
	ecosystems such as subtropical forests,	Poppy (Meconopsis grandis),
	alpine meadows and temperate forests.	Himalayan Yew (Taxus wallichiana),
		Sikkim Rhubarb (<i>Rheum nobile</i>), Blue
		Vanda (Vanda coerulea), Lady Slipper
		Orchids (Paphiopedilum spp.)
Indo-Burma	This biodiversity hotspot, which includes	Wild Banana (Musa balbisiana),
Region	sections of Northeast India, is among the	Pitcher Plants (Nepenthes spp.),
	world's most ecologically diverse regions. It	Rafflesia arnoldii (World's largest
	encompasses a variety of habitat types,	flower), Khasi Pine (Pinus kesiya)
	including wetlands, grasslands and tropical	
	forests.	
Sundaland	A portion of the Andaman and Nicobar	Andaman Padauk (Pterocarpus
	Islands, which are renowned for their	dalbergioides)
	exceptional plant diversity, are included in	
	this hotspot. A variety of coral reefs,	
	mangroves, and tropical rainforests can be	
	found in Sundaland.	

2. Importance of Plant diversity:

Plants are very important for the survival of human beings as well as animals. They are the foundation of ecosystem, play the role of producers and manage the climate of the Earth. Here is a review of its significance:

- **2.1. Stability of Ecosystem:** Plant diversity is the base of ecosystem, which offers vital functions like carbon sequestration, nutrient cycling and soil fertility etc. Diverse plant communities help ecosystem remain stable and productive by increasing their ability to tolerate changes in the environment.
- **2.2. Supporting Life:** In both terrestrial and aquatic environments, plants are the primary producers and the base of the food chain. For numerous living organisms, including insects, birds, animals and even microbes, they offer food, shelter and habitat.
- **2.3. Source of Medicine:** Both traditional and modern medicines rely heavily on the bioactive chemicals found in a wide variety of plant species. Indigenous people used plant-derived medicines to treat a wide range of diseases. It is necessary to preserve the diversity of plants to keep options for new medical resources available and create new medicines.
- **2.4. Genetic variation:** A large pool of genetic variation found in plants is essential for breeding initiatives, agricultural development and environmental adaptation. Wild plant relatives can be used to improve the resilience and production of cultivated crops by incorporating useful qualities including disease resistance, drought tolerance and nutritional quality. Future generations will benefit from the preservation of priceless genetic resources.

Journal of the Oriental Institute

M.S. University of Baroda

ISSN: 0030-5324 UGC CARE Group 1

- **2.5. Climate Regulation:** Plants are essential for maintaining the Earth's climate through transpiration, which affects atmospheric moisture levels and photosynthesis, which sequesters carbon dioxide. As carbon sinks, wetlands, forests and other vegetated ecosystems absorb greenhouse gases and lower atmospheric carbon concentrations, so minimizing the effects of climate change.
- **2.6. Economic Benefits:** Through a variety of ecosystem services, plant diversity significantly boosts economic development. Plant diversity provides essential economic resources such as agricultural products, textiles, timber and non-timber forest products. Additionally, ecotourism initiatives focused on a variety of ecosystems draw tourists, bring in money and open up job opportunities, all of which help to sustain local economies and way of life.
- **2.7. Cultural and Aesthetic Value:** Across all human communities, plants are significant from a cultural, spiritual and aesthetic viewpoint. They play a significant role in religious rites, tradition, literature and the arts, influencing cultural identities and customs. Furthermore, varied plant landscapes offer people recreational opportunities and aesthetic pleasure, strengthening bonds with the natural world and enhancing overall wellbeing.

3. Challenges to Plant diversity:

India's rich plant diversity is under risk, despite its richness. With the fast growth of urbanization, industrial development, agriculture growth and expanding human population resulting in degradation, fragmentation and habitat destruction of biological resources (Agnihotri*et al.* 2020). One-third to one-four of the 1.7 million species currently living on Earth are projected to go extinct in the next years (Soni, 2024). Further, the conservation efforts are hampered by a number of issues. These include insufficient finance for conservation efforts, clashing interests between the development and conservation agendas and lack of awareness, unsustainable land use practices and inadequate legal protection. The main causes of biodiversity losses are:

- **3.1. Habitat Loss and Degradation:** A major obstacle to India's plant diversity is the country's expanding agricultural sector, deforestation, urbanization and infrastructure development. There are less suitable habitats available for plant species as a result of habitat fragmentation.
- **3.2. Invasive Species:** The biodiversity of native plants in India is seriously threatened by the introduction and spread of invasive species. It rejects the native species for existence and availability of the resources hence degrading the quality of the environment. They compete with native species for food and habitat. *Prosopis juliflora* and *Lantana camara* are two examples of invasive species that have expanded widely and offered difficulties for ecosystem management and biodiversity protection (**Table 3**).

Invasive Plant Species	Area of Origin	Common Places Found in India
Ageratina adenophora	Central and South	Northeast India, Western Ghats, Eastern
	America	Himalayas
Chromolaena odorata	Tropical America	Northeast India, Western Ghats, Andaman
		and Nicobar Islands
Eichhornia crassipes	South America	Lakes, rivers, water bodies across India
Eucalyptus spp	Australia	Haryana, Gujarat, Tamil Nadu, Andhra
		Pradesh, Mysore, Kerala and Nilgiri Hill
Hyptis suaveolens	Central and South	Western Ghats, Eastern Ghats, Northeast
	America	India

 Table 3: Some common Invasive plant species found in India:

Jo	ournal		
01 01	riental Institute		ISSN: 0030-5324
м.	S. University of Baroda		UGC CARE Group 1
	Lantana camara	Central and South	Western Ghats, Eastern Ghats, Himalayan
		America	foothills
	Mikania micrantha	Central and South	Northeast India, Western Ghats, Andaman
		America	and Nicobar Islands
	Mimosa invisa	Central and South	Andaman and Nicobar Islands, Northeast
		America	India, Western Ghats
	Parthenium hysterophorus	Americas	Throughout India, especially in disturbed
			areas
	Prosopis juliflora	Central and South	Rajasthan, Gujarat, Maharashtra,
		America	Karnataka
	Water hyacinth (Eichhornia	South America	Lakes, rivers, water bodies across India
	crassipes)		

3.3. Threatened & Endangered Species: Many plant species found in India are classified as critically endangered or endangered on the IUCN Red List. Some important taxa like the Indian Ghost Tree (*Davidia involucrata*), the Pitcher Plant (*Nepenthes khasiana*) and the Indian Rhododendron (*Rhododendron arboreum*) are examples of threatened plant species (**Table 4**). In order to save these species from extinction and maintain genetic diversity, conservation initiatives are essential.

Common Name	Scientific Name	Location
Assam Catkin Yew	Amentotaxus assamica	Assam, Northeast India
Blue Vanda	Vanda coerulea	Northeast India
Brahma Kamal	Saussurea obvallata	Himalayas, Uttarakhand
Ebony Tree	Diospyros nilagirica	Western Ghats
Indian Podophyllum	Podophyllum hexandrum	Himalayas
Kuth	Saussurea costus	Kashmir Himalayas
Madhucainsignis	Madhuca ninsignis	Western Ghats, Karnataka
Malabar Mahogany	Dysoxylum malabaricum	Western Ghats, Kerala
Pitcher Plant	Nepenthes khasiana	Meghalaya, Northeast India
Red Sandalwood	Pterocarpus santalinus	Eastern Ghats, Andhra Pradesh
Sandalwood	Santalum album	Southern India
Saracaasoca	Saraca asoca	Throughout India
Siroi Lily	Lilium mackliniae	Manipur, Northeast India
Tree Fern	Cyathea nilgirensis	Western Ghats
Wild Orange	Citrus indica	Northeast India

Table 4: Some of the well-known threatened plant species of India:

- **3.4. Climate Change:** India's plant diversity is facing more difficulties as anoutcome of climate change. Plant distribution, phenology and ecosystem functioning are impacted by evolving climatic conditions, rising temperatures, modified precipitation patterns and extreme weather events. Particularly vulnerable habitats that are sensitive to climate change, such as wetlands, coastal ecosystems and Montana forests.
- **3.5. Overexploitation and Unsustainable Harvesting:** Many plant species are in danger of going extinct due to overexploitation of plant resources for fuel wood, lumber, medicinal plants and other uses. Damage to habitats and unsustainable harvesting methods endanger important plant resources and upset natural equilibrium.
- **3.6. Pollution and Contamination:** India's plant diversity is under risk due to pollution from mining, industrial processes, agriculture and urbanization. Plant health, plant reproduction and

Journal of the Oriental Institute

ISSN: 0030-5324 UGC CARE Group 1

M.S. University of Baroda

ecosystem integrity are all negatively impacted by soil contamination, chemical pesticides and pollution of the air and water. In food webs, contaminants cause bioaccumulation and biomagnification as they build up in plant tissues.

- **3.7. Lack of Public Engagement and Awareness:** Policymakers, stakeholders and the general public all have a poor awareness of the value of plant diversity, which makes conservation efforts difficult. Biodiversity conservation programmes depend on public engagement, education, awareness and communication.
- 4. Conservation Efforts: Plant diversity conservation has gotten less attention than animal conservation, may be because plants are less popular (Corlett, 2016). India has made notable progress in conserving plant diversity in spite of obstacles. To preserve plant and animal species, the nation has built a set-up of protected areas *viz* National Parks, Wildlife Sanctuaries and Biosphere Reserves. Furthermore, a number of legislative initiatives offer legal foundations for the conservation of biodiversity, including the Biological Diversity Act and the Wildlife Protection Act. Plant diversity is also preserved via programs including afforestation, community-based conservation efforts and scientific study.In order to preserve plant diversity in India, conservation efforts are broad and involve a range of stakeholders, including local populations, government agencies, non-governmental organizations (NGOs), researchers and civil society. An outline of important conservation efforts is provided below:
 - 4.1. Network of Protected Areas: To preserve plant diversity and protect vital habitats, India has set up a network of protected areas (Table 5). These protected areas offer vital ecosystem services and act as havens for threatened plant species. These are grouped into two broad categories- In-situ &Ex-situ Conservation. In-situ conservation refers to the conservation of ecosystems and natural habitats, ensuring that plant species thrive in their natural environments which include National Parks, Wildlife Sanctuaries and Biosphere Reserves (Table 6). Ex-situ conservation refers to the conservation of plant species outside their natural habitats. This method is employed when in-situ conservation alone is not sufficient to protect plant species that are on the verge of extinction or are difficult to conserve in their natural habitat. Ex-situ conservation includes Botanical Gardens, Seed Banks, Field Gene Banks, Cryopreservation etc (Table 7, 8 & 9). Both in-situ and ex-situ conservation strategies are critical in preserving India's rich plant diversity, ensuring that species are protected in their natural habitats and also safeguarded for future generations through scientific methods.

Table 5: Some	Protected	Areas	of Plant	diversity	in	India:
I dole et bonne	I I Ottettu			arterbieg		

Conservation Area	City	State	Plant Species Conserved
Bandhavgarh National	Umaria	Madhya	Madhuca longifolia, Pterocarpus
Park		Pradesh	marsupium, Buchanania lanzan,
			Cassia fistula
Corbett National Park	Ramnagar	Uttarakhand	Salix tetrasperma, Taxodium
	_		distichum, Butea monosperma,
			Boswellia serrata
Eastern Ghats	Visakhapatnam	Andhra	Syzygium cumini, Pterocarpus
		Pradesh	marsupium, Wrightia tinctoria,
			Cleistanthus collinus
Gir National Park	Junagadh	Gujarat	Acacia nilotica, Prosopis
	_		cineraria, Salvadora persica,
			Ziziphus mauritiana

Journal of the Oriental Institute M.S. University of Baroda

ISSN: 0030-5324

S. University of Baroda			UGC CARE Group 1
Himalayan National Parks	Dehradun	Uttarakhand	Rhododendron spp., Cedrus deodara, Taxus wallichiana, Saussurea obvallata
Jim Corbett National Park	Nainital	Uttarakhand	Shorea robusta, Terminalia arjuna, Boswellia serrata, Ficus religiosa
Kanha National Park	Mandla	Madhya Pradesh	Diospyros melanoxylon, Terminalia chebula, Anogeissus latifolia, Lagerstroemia parviflora
Kaziranga National Park	Golaghat	Assam	Elephant grass (Saccharum ravennae), Giant bamboo (Dendrocalamus hamiltonii), Acacia catechu, Arundo donax
Keoladeo National Park	Bharatpur	Rajasthan	Typha elephantina, Nymphaea nouchali, Phragmites karka, Acacia nilotica
Manas National Park	Barpeta	Assam	Aquilaria malaccensis, Shorea robusta, Aphanamixis polystachya, Dillenia indica
Nagarhole National Park	Kodagu	Karnataka	Tectona grandis, Terminalia tomentosa, Pterocarpus marsupium, Lagerstroemia microcarpa
Nilgiri Biosphere Reserve	Ooty	Tamil Nadu	Strobilanthes kunthianus, Rhopalostylis sapida, Vanda thwaitesii, Cycas spp.
Pench National Park	Seoni	Madhya Pradesh	Butea monosperma, Terminalia bellirica, Emblica officinalis, Bombax ceiba
Periyar National Park	Thekkady	Kerala	Diospyros ebenum, Cinnamomum verum, Artocarpus heterophyllus, Ficus religiosa
Ranthambore National Park	SawaiMadhopur	Rajasthan	Commiphora wightii, Terminalia arjuna, Anogeissus pendula, Berberis aristata
Sariska National Park	Alwar	Rajasthan	Acacia leucophloea, Cassia fistula, Prosopis cineraria, Anogeissus pendula
Silent Valley National Park	Mannarkkad	Kerala	Mesua ferrea, Cinnamomum verum, Dillenia indica, Elaeocarpus serratus
Sundarbans National Park	Kolkata	West Bengal	Avicennia marina, Heritiera fomes, Nypa fruticans, Rhizophora mucronata
Tadoba National Park	Chandrapur	Maharashtra	Boswellia serrata, Madhuca indica, Lagerstroemia parviflora, Butea monosperma
Western Ghats	Coimbatore	Tamil Nadu	Rhododendron arboreum, Dioscorea bulbifera, Vanda tessellata, Aerides multiflora

ISSN: 0030-5324

UGC CARE Group 1

 Table 6: Some In-situ conservation methods of Plant diversity in India:

In-situ Conservation Methods	Examples
National Parks	 Kaziranga National Park, Assam Jim Corbett National Park, Uttarakhand Sundarbans National Park, West Bengal Bandhavgarh National Park, Madhya Pradesh
Wildlife Sanctuaries	 Periyar Wildlife Sanctuary, Kerala Sariska Wildlife Sanctuary, Rajasthan Manas Wildlife Sanctuary, Assam Mudumalai Wildlife Sanctuary, Tamil Nadu
Biosphere Reserves	 Nilgiri Biosphere Reserve, Tamil Nadu Nanda Devi Biosphere Reserve, Uttarakhand Gulf of Mannar Biosphere Reserve, Tamil Nadu Sunderban Biosphere Reserve, West Bengal
Sacred Groves	 Khasi and Jaintia Hills, Meghalaya Kodagu District, Karnataka Aravalli Hills, Rajasthan Western Ghats, Maharashtra and Kerala
Reserve Forests	 Simlipal Reserve Forest, Odisha Gir Reserve Forest, Gujarat Dandeli Reserve Forest, Karnataka Seshachalam Reserve Forest, Andhra Pradesh

Table 7: Some Ex-situ conservation methods of Plant diversity in India:

Ex-situ	Examples	Description
Conservation Methods		
Botanical Gardens	 Lloyd Botanic Garden, Darjeeling Indian Botanic Garden, Howrah Lalbagh Botanical Garden, Bangalore Acharya Jagadish Chandra Bose Indian Botanic Garden, Kolkata 	Large gardens for conservation and education that are home to a wide range of plant species, including rare and endangered ones.
Seed Banks	 National Bureau of Plant Genetic Resources (NBPGR), New Delhi ICRISAT Gene Bank, Hyderabad MSSRF Community Seed Bank, Chennai Forest Research Institute (FRI) Seed Bank, Dehradun 	Establishments that retain seeds of different plant species for the purpose of maintaining genetic diversity and utilizing them in future breeding and restoration events.
Field Gene Banks	 Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow Rubber Research Institute of India, Kottayam National Research Centre for Agroforestry, Jhansi 	Preserves live plant collections in fields in order to protect the genetic resources of economically significant plants as well as those of their wild relatives.
Cryopreservation	 National Bureau of Plant Genetic Resources (NBPGR), New Delhi Institute of Himalayan Bioresource Technology (IHBT), Palampur 	Preserves plant germplasm- seeds, embryos, and tissues by employing extremely low temperatures (-196°C)

Journal of the Oriental Institute M.S. University of Baroda

ISSN: 0030-5324

S. University of Baroda		UGC CARE Group 1
	3. ICAR-National Dairy Research Institute,	that cannot be preserved by
	Karnal A Regional Centre for Biotechnology	normal means.
	Faridabad	
In Vitro Conservation	 Tissue Culture and Cryopreservation Unit, NBPGR ICAR-Indian Agricultural Research Institute (IARI), New Delhi Kerala Forest Research Institute, Peechi 	Uses tissue culture methods to cultivate and preserve plant tissues for conservation and propagation in a sterile, controlled environment.
Arboreta	 Indian Council of Forestry Research and Education (ICFRE) Arboretum, Dehradun Lalbagh Botanical Garden, Bangalore Aravalli Biodiversity Park, Delhi Tropical Botanic Garden and Research Institute (TBGRI), Thiruvananthapuram 	Collections of specific trees and plants that are kept up for scientific study, education and conservation.
DNA Banks	 Centre for Cellular and Molecular Biology (CCMB), Hyderabad Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram National Institute of Plant Genome Research (NIPGR), New Delhi 	Preserves genetic material- such as DNA samples from different plant species for breeding, genetic research and conservation.

Table 8: Botanical Gardens/Ex-situ conservatories under the control of Botanical Survey of India:

S.No.	Name of Botanical Garden/Ex-situ conservatories	Total No. of Species conserved (approx.)	Area (Acres)	
1	Acharya Jagdish Chandra Bose Indian Botanical Garden, Howrah (West Bengal)	1400	273	
2	Botanical Garden of Indian Republic (BGIR), Noida (Uttar Pradesh)	900	163.79	
3	Barapani Experimental Garden, Barapani& National750Orchidarium, Shilong (Meghalaya)750			
4	Experimental Botanical Garden, Andaman & Nicobar Island, Dhanikari	250	70	
5	Experimental Botanical Garden, Arunachal Regional Centre, Sankie view	200	110	
6	Experimental Botanical Garden & National Orchidarium, Yercaud, (Tamil Nadu) under Southern Regional Centre, Coimbatore (A.P.)	1200	40	
7	Experimental Botanical Garden, Western Regional Centre, Mundhwa, Pune (Maharashtra)	500	38	
8	Experimental Botanical Garden, Sikkim & Himalayan Regional Centre, Gangtok	200		
9	Experimental Botanical Garden, Northen Regional Centre, Pauri	750	35	
10	Experimental Botanical Garden, Northen Regional Centre, Khirsu		18	
11	Experimental Botanical Garden, Northen Regional Centre, Dehradun (Uttrakhand)	350	5	
12	Experimental Botanical Garden, Arid Zone Regional Centre, Dehradun	185	12	
13	Experimental Botanical Garden, Central Circle, Allahabad (Uttar Pradesh)	600	7	

Source: Botanical Survey of India (BSI), 2020.

Name of Herbarium	No. of Plant Specimen conserved	
The Central National Herbarium, Howrah	2,000,000 (2 million) specimens	
Forest Research Institute, Dehradun	350,000 specimens	
The National Botanic Gardens, Lucknow	260,000 specimens	
Blatter Herbarium, St. Xavier"s college, Fort Bombay	200,000 specimens	

Source: Botanical Survey of India (BSI), 2020.

4.2. Policy and Legal Frameworks: The conservation of biodiversity, the preservation of habitats and the sustainable management of resources are all made possible by laws like the Biological Diversity Act, the Forest Conservation Act and the Wildlife Protection Act (Table 10). The Biological Diversity Act, 2002 (BDA) provides an umbrella legal framework to affirm our commitments for conservation and sustainable use of biodiversity in India (Meenakumari & Rana, 2017). These regulations, which attempt to stop the loss of biodiversity and advance sustainable development, control activities including hunting, logging, habitat damage and the trade in endangered species.

Table 10: Outline of difference	ent policies and acts for	the conservation of	f Plant diversity in India:
	1		

Policy/Act	Year	Description	
Wildlife Protection Act	1972	Protects wildlife, birds, and plants and their	
		habitats. Controls hunting and trading.	
Forest Conservation Act	1980	Regulates diversion of forest land for non-forest	
		purposes. Aims to conserve forests and	
		biodiversity.	
National Forest Policy	1988	Emphasizes conservation, regeneration, and	
		sustainable management of forests for ecological	
		stability.	
National Biodiversity Action	2002	Aims to conserve biodiversity, identify threats, and	
Plan (NBAP)		prioritize conservation actions.	
Biological Diversity Act	2002	Aims to conserve biological diversity, promote	
		sustainable use of biological resources, and	
		equitable benefit-sharing.	
National Wildlife Action Plan	2002	Provides a framework for wildlife conservation,	
		habitat management, and species recovery	
		programs.	
National Policy for Farmers	2007	Promotes conservation of traditional crop varieties	
		and encourages sustainable agricultural practices.	
National Agroforestry Policy	2014	Encourages agroforestry practices to enhance	
		productivity, conserve biodiversity, and improve	
		rural livelihoods.	
National Bamboo Mission	2018	Promotes cultivation of bamboo for sustainable	
		resource management, biodiversity conservation,	
		and livelihoods.	
National Afforestation	Ongoing	Aims to increase forest cover, restore degraded	
Programme		lands, and promote biodiversity conservation	
		through afforestation.	

4.3. Species-specific Conservation: Through ex-situ conservation target endangered and threatened plant species. Plans for species-specific conservation provide top priority to safeguarding flagship species and keystone plant taxa, which are essential to the resilience and smooth operation of ecosystems.

Journal of the Oriental Institute M.S. University of Baroda

ISSN: 0030-5324 UGC CARE Group 1

- **4.4. Forest Conservation:** The main goals of forest conservation are to combat illicit logging and deforestation, restore degraded forest ecosystems and promote sustainable forest management. Agroforestry, community-based forest management, afforestation and reforestation are a few of the initiatives that help preserve Plant diversity, improve carbon sequestration and sustain livelihoods.
- **4.5. Indigenous Knowledge & Community-based Conservation:** It means involving local people in conservation efforts. The effectiveness of biodiversity conservation programmes in India depends on the engagement and participation of the community in conservation initiatives. It lies in the fact that indigenous groups have invaluable traditional knowledge about many plant species and their applications, which can help guide conservation efforts. Community-based conservation strategies give local people the capacity to preserve traditional knowledge, manage natural resources responsibly and preserve biodiversity.
- **4.6. Research and Monitoring:** For successful conservation programmes, scientific study, monitoring and recording of plant species are crucial. To evaluate plant diversity, Research Institutes, Universities and Botanical Gardens carry out surveys, taxonomic investigations and ecological research.
- **4.7. Public awareness and Education:** Public awareness and education initiatives serve to increase the general public, policymakers' and stakeholders' understanding of the significance of plant diversity, conservation challenges and sustainable practices. Campaigns, workshops, seminars and environmental education initiatives all support biodiversity conservation and responsible behaviour in the general public.
- **4.8.** Sustainable Land Use Practices: Sustainable land use strategies like agroforestry, organic farming, sustainable forestry, and habitat restoration reduce plant diversity threats. Integrated landscape management coordinates development and conservation.
- **4.9. International Collaboration:** India shares information, skills, resources and exchange knowledge on biodiversity conservation projects with International Organizations, Research Institutes and Agencies. Cooperation is made easier by international agreements like the Convention on Biological Diversity (CBD), Ramsar Convention on Wetlands and Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES).

CONCLUSION

In conclusion, plant diversity is vital to the continuation of life on earth, the maintenance of ecosystem services and the development of human culture and well-being. India's rich plant diversity is under risk, despite its richness. Further, the conservation efforts are loaded by a number of issues including insufficient finance for conservation efforts, clashing interests between the development and conservation agendas and lack of awareness, unsustainable land use practices and inadequate legal protection. But, India has made notable progress in conserving plant diversity in spite of obstacles. The nation has built a set-up of protected areas along with a number of legislative initiatives for the conservation of biodiversity, including the Biological Diversity Act and the Wildlife Protection Act. Plant diversity is also preserved via programmes including afforestation, community-based conservation efforts and including a range of stakeholders such as local populations, government agencies, NGOs, researchers and civil society. India can protect its unique biological legacy for future generations by acknowledging the significance of plant diversity, addressing the root causes of biodiversity loss and putting strong conservation measures, research, innovation, education, raising public awareness and by integrating traditional knowledge with modern science and educating the public about biodiversity conservation.

Vol. 73, Issue 4, Oct-Dec: 2024

- 1. Agnihotri, N., Dassani, S. and Sharma, T. K. (2020). Present Status and Conservation Strategies of Biodiversity in India. *International Research Journal on Advanced Science Hub*, 2, 251-255.
- 2. Arisdason, W. & Lakshminarasimhan, P. (2024). Status of Plant Diversity in India: An Overview. A Report; Central National Herbarium, Botanical Survey of India, Howrah; ENVIS Centre, Ministry of Environment & Forest, Govt. of India.
- Bawa, K. S., Sengupta, A., Chavan, V., Chellam, R., Ganesan, R., Krishnaswamy, J., Mathur, V. B., Nawn, N., Olsson, S. B., Pandit, N. and Quader, S., Rajagopal, P., Ramakrishnan, U., Ravikanth, G., Sankaran, M., Shankar, D., Seidler, R., Shaanker, R.U. and Vanak, A.T. (2021). Securing biodiversity, securing our future: A national Mission on biodiversity and human wellbeing for India. *Biological Conservation*, 253, 108867.
- 4. Chandrakar, A. K. (2012). "Biodiversity conservation in India, Technical Report" DOI:10.13140/ RG.2.1.1490.3208.
- 5. Corlett, R.T. (2016). Plant diversity in a changing world: Status, trends, and conservation needs. *Plant Diversity*, 38:1, 10-16.
- 6. Groombridge, B. & Jenkins, M. D. (2002). World Atlas of Biodiversity: Earth's Living Resources in the 21st Century. University of California Press.
- 7. Heywood, V. H. & Watson, R. T. (1995). *Global Biodiversity Assessment*. Cambridge University Press.
- 8. Mao, A.A., Agrawala, D.K. & Mukherjee, S. (2023). Plant Discoveries 2022. Botanical Survey of India, Ministry of Environment, Forest & Climate Change, ISBN: 978-81-962640-1-7.
- 9. Meenakumari, B. & Rana, R. S. (2017). Implementing the Biological Diversity Act in India: Focus on ABS and Agro-biodiversity. *Indian Journal of Plant Genetic Resources*, 30(1), 25-30.
- Soni, P.K. (2024). Present status of Biodiversity and its conservation in India. Edited Book: Biodiversity Conservation and Environmental Sustainability. P.K. Publishers & Distributors, Delhi-110053.