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ABSTRACT 

I propose to unveil before you some of the magnificent properties and useful concepts of the theory of 

bicomplex numbers and functions of a bicomplex variable. I also proposed to present certain glimpses 

of its multifaceted applications. Allow me to start with a brief historical background that led to the 

origin of this theory. 

INTRODUCTION 

The basic hurdle in the development of the subject was the concept of algebra. The only algebra 

known until then was the algebra of real numbers. Moreover, with Gauss' proof of its fundamental 

theorem, the subject "algebra" became synonymous with "study of polynomials". The nineteenth 

century saw two major breakthroughs in this approach.  

First, the thrust of the subject was shifted from the study of polynomials to the study of the structure 

of algebraic system. A major step in this direction was the invention of Symbolic Algebra by the 

English mathematician George Peacock (1791-1858). In 1830, he published his book "Treatise of 

Algebra" and put forward the logical structure of an abstract algebra.  

The second major breakthrough was the discovery of algebraic systems, which satisfy not all but 

most of the properties of the algebra of real numbers. In 1833, the Irish mathematician, Sir William 

Rowan Hamilton (1805-1865) developed an algebra of real numbers, which is the present day algebra 

of complex numbers. It was the beginning of theory of algebras different from the algebra of real 

numbers.  

Many special algebras came up since then, most noteworthy amongst them being Matrix algebras 

developed by Arthur Cayley (1821-1895) and Clifford algebra developed by William Kingdon 

Clifford (1845-1879).  
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ANALYSIS AND APPLICATIONS 

A quaternion is a number of the type  

X = x0+ ix1+jx2 + kx3  

where xp  R, p = 0, 1, 2, 3 and i, j, k are symbols such that  

i2 = j2 = k2 = 1 and ij = - ji = k, jk =  kj = i, ki = ik = j.  

The addition of quaternions and multiplication by a real scalar was defined as what we call 

coordinatewise. The multiplication of two quaternions was defined in a typical manner (due to the 

hypotheses made about the symbols i, j and k as mentioned above) as  

(x0 + ix1+jx2 + kx3)  (yo+ iy1 + jy2+ky3)  

= (xoyo x1y1  x2y2  x3y3) + i(xoy1 + x1yo+ x2y3  x3у2)  

+j(xoy2 − x1у3 + x2yo+x3y1)+k(x0y3+ x1у2  x2y1 + x3у0)  

Hamilton developed the quaternion algebra by the method of trial and error. Apparently, he was 

looking for a multiplication in which every non-zero element must possess an inverse. Today we 

know that quaternions are the only 4-D division algebra. This is an evidence how, at times, the 

method of trial and error may lead to a beautiful as well as useful concept.  

Very few of us know that modern Vector Analysis has originated from this concept of quaternions. 

Hamilton proposed to distinguish "x0" as the "scalar part" and "x = ix1 +jx2 + kx3" as the "vector part" 

of the number. In particular, the product of two "vector parts" of quaternions took the shape  

      xy = (ix1 + jx2 + kx3)  (iy1 + jy2+ky3)  

=( x1y1  x2y2  x3y3) + {i(x2у3  x3y2) + j(x3y1 − x1y3) + k(x1y2  x2y1)}  

which, in modern language of vector analysis, can be put as  

=  x y + (xy)  

The terms "scalar product" and "vector product" emerged from here only and were proposed by 

Hamilton himself. The contemporary workers in this area saw the possibility of using these numbers 

as four-dimensional vectors. Hamilton himself knew about this possibility and hoped that some day it 

could be used for introducing time as the fourth independent dimension and then the theory would 

become a powerful tool not only for geometers but also for physicists.  

However, as luck would have it, the idea faced a stiff opposition from the conservative class of that 

era. Most surprisingly, the idea of a four-dimensional quantity was not acceptable to the engineers 

and scientists of the time. Especially, the idea of treating time as the fourth independent coordinate 

was totally dismissed.  
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Nevertheless, the concept had a charm which could not be thrust aside so easily. Around 1900, Josiah 

Willard Gibbs (1839-1903) of America and Oliver Heaviside (1850-1925) of Britain presented a 

camouflaged form of quaternions so that all vectors were restricted to a dimension less than or equal 

to three. In order to retain closure under cross product they assumed, without any logic behind the 

assumption, that ii = jj = kk = 0.  

They cleverly renamed this camouflaged version of quaternion analysis as Vector Analysis. 

Surprisingly, the scientists and the engineers readily accepted this version and vector analysis attained 

the position where it is today, leaving its first ancestor-quaternion analysis-far behind.  

Every student of algebra has learnt about quaternions as a counter example of a division ring, which 

is not a field. In fact, as seen above, multiplication of quaternions is not commutative. This was a 

very big drawback in the theory of quaternions and probably the biggest hurdle in its prosperity.  

In 1892, Corrado Segre (1860-1924) [S1] came up with the concept of Multicomplex Numbers. He 

defined a bicomplex number as  

 = x1 + i1x2 + i2x3 + i1i2x4 = (x1+i1x2) + i2(x3 + i1x4) =z1+i2z2  

where x  R, 1 ≤ k ≤4; z1,z2  C and 2 2
1 2 1 2 2 11;i i i i i i     

A tricomplex number was defined as a number of the type 3 , ,i     being bicomplex numbers 

and 
2
3 3 2 2 3 3 1 1 31, ,i i i i i i i i i    . Iteratively, an n-complex number is a number ,ni      being 

(n1)-complex numbers and 
2 1, ,n n k k ni i i i i     1 1k n   .  

The set of bicomplex, tricomplex,... numbers are denoted C2, C3, and so on. The set of complex 

numbers and real numbers are denoted C1 and C0, respectively. For the sake of brevity, I will confine 

my deliberations to bicomplex version of the theory only.  

Segre wished to develop a field structure on C2 but Frobenius [F1] had already shown, in 1877, that 

no such field could exist. Segre developed algebra of bicomplex numbers by defining coordinatewise 

addition and real scalar multiplication. Multiplication of bicomplex numbers was defined on the lines 

of Hamilton incorporating the new hypotheses about i1 and i2. Thus if  

1 1 2 2 3 1 2 4 1 2 2 ,y i y i y i i y w i w         

1 1 2 2 3 3 4 4 1 1 2 2 1 3 4 4 3) ( )x y x y x y x y i x y x y x y x y            

 2 1 3 2 4 3 1 4 2 1 2 1 4 2 3 3 2 4 1( ) ( )i x y x y x y x y i i x y x y x y x y         

1 1 2 2 2 1 2 2 1( ) ( )z w z w i z w z w      

ALGEBRAIC STRUCTURE OF C2 
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Equipped with these compositions, C2 becomes a commutative algebra, which is not a field. In fact, 

the algebraic structure of C2 differs from that of C1 in many respects. I will mention only a few of 

them that are required in our further discussions.  

1.1  NON-ZERO SINGULAR (NON-INVERTIBLE) ELEMENTS EXIST IN C2  

Actually, a bicomplex number 1 2 2z i z    is singular if and only if 2 2
1 2| | 0z z  . Due to the 

existence of singular elements, the division by a bicomplex number and the cancellation laws are 

restricted to non-singular bicomplex numbers.  

Many of us might lose interest in the subject due to the presence of the singular elements. However, 

as it will turn out, the set of all singular elements has an interesting and useful structure and a 

prominent role in the development of the theory. To emphasize this, we shall touch this topic again, a 

little later.  

1.2 NON-TRIVIAL IDEMPOTENT ELEMENTS EXIST IN C2  

Besides 0 and 1 there are two non-trivial idempotent elements in C2, denoted e1 and e2 and defined as  

1 1 2 2 1 2(1 ) / 2, (1 ) / 2e i i e i i     

Note that e1e2 = e2e1 = 0. Further, every element of C2 can be written as  

1 2 2 1 1 2 1 1 1 2 2( ) ( )z i z z i z e z i z e        

Such representation of a bicomplex number as a combination of complex multiples of e1 and e2 is 

unique and is known as the Idempotent Representation of and the complex coefficients z1  i1z2 and 

z1 + i1z2 are called the idempotent components of the bicomplex number 1 2 2z i z   . 

The theory of bicomplex numbers and functions of a bicomplex variable gets a new tool in the shape 

of idempotent representation, which helps a lot in understanding and interpreting certain aspects.  

The algebraic structure of C2 is consistent with the idempotent representation in the sense that a 

binary composition of bicomplex numbers is equivalent to the corresponding binary composition of 

their respective idempotent components. Of particular interest are the following identities:  

 1 2 2 1 1 2 1 1 1 2 2( ) ( ) ( )n n n nz i z z i z e z i z e        

and  1 2 2 1 2 2/ {( ) /( )}n z i z w i w     

 1 1 2 1 1 2 1 1 1 2 1 1 2 2{( ) /( )} {( ) /( )}z i z w i w e z i z w i w e       

Of course,  is non-singular.  

An immediate suggestion from the idempotent representation is the following definition of Complex 

Auxiliary Spaces A1 and A2, viz.,  
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 1 1 1 2 1 2 1{ ; , }A z i z z z C    

and  2 1 1 2 1 2 1{ ; , }A z i z z z C    

Obviously, A1 and A2 are only different representations of C1 and there is a natural homomorphism 

between C2 and A1  A2. However, they have their own important place in the theory.  

To illustrate this, recall that a non zero bicomplex number 1 2 2z i z    is singular iff 2 2
1 2| | 0z z  . 

This is equivalent to (z1  i1z2) (z1+ i1z2) = 0. Now, C1, being a field, is devoid of zero divisors. Hence 

(z1  i1z2)(z1 + i1z2) = 0 is possible if and only if one of the two complex factors is zero (both the 

factors cannot vanish simultaneously, since   0). In other words, a bicomplex number is singular if 

and only if one of its idempotent components vanishes, i.e., if and only if the bicomplex number is a 

complex multiple of e1 or e2.  

Thus, if we define  

 1 2 1 1 1 1 1 2{ ; , } { ; }I C w e w C e C            

 1 1 2 1 1 2 1{( ) ; , }z i z e z z C     

and  

 2 2 2 2 2 1 2 2{ ; , } { ; }I C w e w C e C            

 1 1 2 1 1 2 1{( ) ; , }z i z e z z C     

we see that 1 2 {0}I I   and their union 2 1 2I I    is precisely the set of all singular elements of 

C2. At times, therefore, it is convenient to realize that if 2 is taken as the "zero element" of C2, C2 

may be regarded as "field". Incidentally, I1 and I2 are principal ideals in C2 generated by e1 and e2, 

respectively.  

FUNCTIONAL ANALYTIC STRUCTURE OF C2 

2.1 The Norm in C2 is defined as  

2 2 1/ 2 2 2 2 2 1/ 2 2 2 1/ 2
1 2 1 2 3 4 2 1 2 1 1 2|| || {| | | | } { } {(| | | | ) / 2}z z x x x x z i z z i z            

With this norm and the coordinatewise addition and scalar multiplication, C2 becomes a Real Banach 

Space. However, it could not become a Classical Banach Algebra because the best estimate for the 

norm of the product could only be || || 2 || || || ||        | instead of || || || || || ||      , as in 

classical Banach algebras. With this shortcoming, C2 is regarded as Modified Banach Algebra.  
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2.2 BICOMPLEX SEQUENCES AND THEIR CONVERGENCE  

Corresponding to various representations of a bicomplex number described above, a bicomplex 

sequence {n}, where  

1 2 2 1 1 2 2 3 1 2 4 1 1 2 1 1 1 2 2( ) ( )n n n n n n n n n n nz i z x i x i x i i x z i z e z i z e            

can be considered as made up of any of the following:  

(a) four sequences {xkn) in C0, 1 ≤ k ≤ 4;  

(b) two sequences (zkn} in C1, 1 ≤ k ≤ 2;  

(c) two sequences 1 1 2{ }n nz i z  and 1 1 2{ }n nz i z  in A1 and A2, respectively. Thus the convergence of 

the sequence (n) is equivalent to the convergence of all the sequences of any one of the above types. 

In fact, we have  

RESULT I. If  

1 2 2 1 1 2 2 3 1 2 4 1 1 2 1 1 1 2 2( ) ( ) ,z i z x i x i x i i x z i z e z i z e            

the following four statements are equivalent:  

(a) The sequence (n) converges to .  

(b) The sequences {xin} converge to xk, 1 ≤ k ≤4.  

(c) The sequences (zkn) converge to zk, 1 ≤ k ≤ 2.  

(d) The sequence 1 1 2{ }n nz i z  converges to z1 i1z2 and the sequence  1 1 2{ }n nz i z  converges to z1 + 

i1z2.  

2.3  BICOMPLEX SERIES AND THEIR CONVERGENCE  

Similar discussions for a bicomplex series and the definition of convergence of a bicomplex series as 

that of the sequence of its partial sums yields an analogue of this result, viz.,  

RESULT II. The following statements are equivalent:  

(a) The series n  converges to  

(b) The series knx  converge to xk, 1 ≤ k ≤ 4.  

(c) The series knz  converge to zk, 1 ≤ k ≤ 2.  

(d) The series 1 1 2( )n nz i z   converges to z1  i1z2 and the series (z1n + i1z2n)  converges to z1 + i1z2.  

The summation runs from 0 to ∞.  
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3.1 BICOMPLEX ANALYSIS  

We start with a few definitions.  

DEFINITION A: The Cartesian set X, in C2, determined by X1  A1, and X2  A2 is defined as  

2 1 1 2 2 1 2 1 2{ : , ( , ) }x C w e w e w w X X        

DEFINITION B: The Open Ball B(, r) with the bicomplex number a as centre and radius r is 

defined as  

2( , ) { ; || || }B r C r        

Closed Ball ( , )B r  is defined analogously.  

DEFINITION C: The Open Discus with centre s 2a i b    and radii r1 and r2 is defined as  

1 2 2 1 1 2 1 1 1 1 2 1 2( ; , ) { : | ( ) ( ) | ; | ( ) ( ) | }D r r C z i z a i b r z i z a i b r            

Closed discus 1 2( ; , )D r r  is defined similarly. 

In some cases, it is convenient to take the centre at origin and the two radii equal to r. Such a disc is 

called the Natural C2 disc of radius г.  

RESULT III. If 0 < r1 ≤ r2, then  

2 2 1/ 2
1 1 2 1 2( , / 2) ( ; , ) ( , {( ) / 2)} );B r D r r B r r      

2 2 1/ 2
1 1 2 1 2( , / 2) ( ; , ) ( , {( ) / 2)} ).B r D r r B r r      

All the inclusions are proper.  

Few properties of these structures are noteworthy:  

(A) A set X is open in C2 if and only if for each 1 2 2z i z X    , there exists  a discus 1 2( ; , )D r r  

in X.  

(B) A set X is arcwise connected if and only if each two points in X can be connected by a polygonal 

arc within X.  

(C) If the Cartesian set X is a domain in C2, X1 and X2 are domains in A1  and A2, respectively.  

(D) If X1 and X2 are domains in A1 and A2, respectively, the Cartesian set  X in C2, determined by X1 

and X2, is a domain in C2.  

 

 

 

 

 



Journal 
of the 

Oriental Institute                                                                                                                 ISSN: 0030-5324 

M.S. University of Baroda                                                                                                               UGC CARE Group 1 

Vol. 73, Issue  3, July-Sep: 2024 www.journaloi.com    Page | 1494 
 

REFERENCES  

1. L. Bers, On the rings of analytic functions, Bull. Amer. Math. Soc., 54 (1948), 311-315.  

2. I.V. Biktasheva and V.N. Biktashev, Response functions of spiral wave solutions of the complex 

Ginzburg-Landau equation, J. Nonlinear Math. Phys., 8 (2001), 28-34.  

3. A. Bloch, Les theorems de M. Valiron sur les fonctions entieres et la theorie de l'  uniformisation, Ann. 

Fac. Sci. Univ. Toulouse, 17(3) (1925), 1-22.  

4. C.M. Davenport, A Commutative Hypercomplex Calculus with Applications to Special Relativity, 

Knoxville, Tennesse, 1991.  

5. C.M. Davenport, Commutative hypercomplex mathematics, on-line cmdaven@usit.net (downloaded in 

Oct. 2003).  

6. G.S. Dragoni, Sulle funzioni olomorfe di una variabile bicomplessa, Reale Acad. d'Italia  Mem. Classe Sci. 

Fic. Mat. Nat., 5 (1934), 597-665.  

7. G. Frobenius, Uber Lineare Substitutionen und Billineare Formen, J. fur Die und  Angewandte 

Mathematik, 84 (1877), 59-63.  

8. M. Futagawa, On the theory of functions of a quaternary variable-I, Tohoku Math. J, 29  (1928), 175-222.  

9. M. Futagawa, On the theory of functions of a quaternary variable-II, Tohoku Math. J, 35 (1932), 69-120.  

10. W.R. Hamilton, On a new species of imaginary quantities connected with a theory of  quaternions, Proc. 

Royal Irish Acad., 2 (1843), 424-434.  

11. M. Hashimoto, A note on bicomplex representation for electromagnetic fields in scattering and diffraction 

problems and its high frequency and low frequency approximations, IEICE Trans. Fundamentals, E80-

C(11) (1997), 1448-1456.  

12. B.G. Price, An introduction to Multicomplex Spaces and Functions, Marcel Dekker, 1991.  

13. F. Ringleb, Beitrage zur Funcktionen theorie in hypercomplexen systemen-1, Rend. Circ. Mat. Palermo, 57 

(1933), 311-340.  

14. D. Rochon, A Bloch constant for hyperholomorphic functions, Complex Variables, 44  (2011), 85-101.  

15. S. Ronn, Bicomplex Algebra and Function Theory, on-line http//arxive.org [math.  CV/0101200] (August 

2002).  


